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Background

# Icing
»* Ground problem during cold months
* Freezing drizzle/rain
» In-flight problem year round
* Results from super-cooled water droplets impacting the aircraft surface while
flying through a cloud
* Most occurrences are between 0 and -20°C

# Icing types encountered in-flight
* Glaze/Clear, Rime, Mixed
»* Dependent upon
e Air temperature (0 to -20°C)
 Liquid water content (0.3-0.6 g/m?)
* Droplet size (median volumetric diameter of 15-40 um)

M.K. Politovich, “Aircraft Icing” in Encyclopedia of Atmospheric Sciences, Academic Press, Oxford, 2003, 68-75.
H.E Addy Jr., M.G. Potapczuk, and D.W. Sheldon, “Modern Airfoil Ice Accretions,” NASA TM 107423, 1997.
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Glaze/Clear

Large droplets

Clear, nearly transparent,
smooth, waxy thus hard to see
Gradual freezing after droplet
impact can result in runback
along surface generating raised
edges (i.e. horns)

Difficult to remove

Background

......

Rime
Small droplets e Variable droplet size
Brittle and opaque, milky e Combination of glaze
appearance and rime ice

Rapid freezing after droplet
impact with growth into the
airstream

Easier to remove than glaze

M.K. Politovich, “Aircraft Icing” in Encyclopedia of Atmospheric Sciences, Academic Press, Oxford, 2003, 68-75.
H.E Addy Jr., M.G. Potapczuk, and D.W. Sheldon, “Modern Airfoil Ice Accretions,” NASA TM 107423, 1997.
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Background

# Current alleviation strategies
* Pneumatic boots
» Heated surfaces
»* De-icing fluids (i.e., ethylene- and propylene-based glycols)

# A passive approach mitigating ice adhesion during the entire aircraft flight profile

1s desirable.

* Superhydrophobic surfaces!

» Surfaces containing anti-freeze proteins?
» Slippery liquid-infused porous surfaces?
* Aqueous lubricating layer*

1. S.A. Kulinich et. al., Langmuir, 27 (2011) 25-29.

2. Anitei, S. Fish 'Antifreeze' Against Icy Aeroplanes. Aug. 8, 2007;
http://news.softpedia.com/news/Fish-Antifreeze-Against-Icy-Aeroplanes-62189.shtml

3. L. Mishchenko, et. al.,”Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water
Droplets,” ACS Nano, 4 (2010) 7699-7707.

4. R. Dou et.al., “Anti-icing Coating with an Aqueous Lubricating Layer,” ACS Appl. Mater. Interfaces (2014).
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Objective

To assess the effect of surface chemical functionalization upon ice adhesion
shear strength (IASS).

Approach

Investigate coated surfaces having controlled chemical functionality and carbon chain length
between the substrate surface and the chemical functionality.

# Prepare and characterize substituted alkyldimethylalkoxysilanes containing
Hydrogen Bonding (HB) and non-HB groups.
» ATR-FTIR, NMR ('H, 13C, ?°Si)
# Prepare and characterize aluminum (Al) substrates coated with pure and mixtures
of alkyldimethylalkoxysilanes containing HB and non-HB groups.
»* Contact Angle Goniometry
# Determine IASS of coated Al substrates in a simulated environment with
comparison to uncoated Al.
»* Adverse Environment Rotor Test Stand
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Substituted Dimethylalkoxysilanes

| e Non-hydrogen bonding
H,CH,C —O—Si —(CHz);CHg - At
| x=2(C3A),6 (C7A),10 (C11A)

) ) e Hydrogen-bonding (donor/acceptor)

CH3 * Hydroxyl
—to— 314<CH2};X—— X =-, y=7 (C7H), 10 (C10H), 11 (C11H)
| CH3 « EG

X =-OCH,CH,-, y=2 (EG)

(|:H3 e Hydrogen-bonding (acceptor)
H3CH2C—O—Si—<CH2tOR « CSMEG
(le3 R = -CH2CH20CH3, Y= 5
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Coating Al Substrate I

CH3 CH3
| HOAc, EtOH, H,O |

H;CH,C—O0O —?i 4<CH2>X7CH3 > HO —?i —{CHﬁXfCH3
CH3 CH3

CH,Cl,, RT
CH, CH3
Al I Al I
— OH + HO—?i—(CHﬁXfCH3 — o ?i (CHZ)X—CH3
CH; CH3
Non-hydrogen bonding
® Aliphatic
x=2(C3A), 6 (C7A),10 (CI1A)
Same method for Hydrogen-bonding (acceptor) (|:H3
o CSMEG H;CH,C—O0—Si A{CH%LOR
R = -CH2CH20CH3, y= 5 (|3H3
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Al

Coating Al Substrate 11

CH3 CH3
HOAc, EtOH, H,O |
—0— 514{CH27YLX—— . HO—Si—(CHﬂyLX—OH
CH,Cl,, RT |
£ CH;
CH; CH3
| Al L.
—OH +Ho—?i4<CH27yLX—OH — o—si (CH27YLX—OH
CH; CH3
Hydrogen-bonding (donor/acceptor)
® Hydroxyl e EG

X =-, y=7(C7H), 10 (C10H), 11 (C11H)

X =-OCH,CH,-, y =2 (EG)

NARI 2015 Seedling Technical Virtual Seminar, March 18-19, 2015



Receding Water Contact Angle
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# Pennsylvania State University
# Testing performed under simulated icing
conditions.
* Super-cooled water injected into test
chamber.
* Tests conducted from -8 to -16°C;
commenced at -16°C
* Icing cloud density (i.e. liquid water content)
of 1.9 g/m’
»* Water droplet mean volumetric diameter of
20 um

# Ice accumulation and subsequent shedding enabled determination of Ice Adhesion
Shear Strength after data analysis and visual assessment.

# Experimental details discussed in J. Soltis, J. Palacious T. Eden, and D. Wolfe,
“Evaluation of Ice Adhesion Strength on Erosion Resistant Materials,” 54th AIAA/
ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
April 8-11, 2013, Boston, MA, AIAA 2013-1509.
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One Component Coatings
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Non-HB: Chain Length Effect

w-8°C w-12°C -16°C

CH,
|

—o—Si—(CHz);CH3 ox =2 (C3A), 6 (CTA), 10 (C11A)
|
CH,

Ice Adhesion Shear Str., kPa
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HB (donor/acceptor): Chain Length Effect

w-8°C w-12°C = -16°C

CH,4

|
L 0—si CszyLX—OH
i—

CH, e X=-OCH,CH,-, y=2 (EG)

® X=-, y=7(C7H), 10 (C10H), 11 (C11H)

Al Control C7H
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HB (acceptor)

“-8°C =-12°C « -16°C

CH,
|
:[ —o—?l—{CHZ)S—OCHZCHZOCH3 * CSMEG

CH,

Ice Adhesion Shear Str., kPa

Al Control
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w-8°C w-12°C  -16°C

CH,

| _
—O—?1—<CH2>;CH3 ex= 6(C7A)

CH,

CH;
|

—o—?i—(CHnny—OH ®X=-, y= 10(C10H), 11 (C11H)
CH,

CH;
|
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One Component Coating Summary

#  Aliphatic (non-HB)
N c, »* Minimum chain length (C7A) needed to decrease interaction of
_O_iiHﬁCHﬁxfcm ice with the substrate (C3A)
»* Long chain length (C11A) resulted in coating degradation

e x=2(C3A), 6 (C7A), 10 (C11A) . i
» Performance compared to HB series dependent on chain length

N CHy # Hydroxyl and EG (HB donor/acceptor)
_O_ZIH_@HZTX_OH »* Not much difference in IASS between test temperatures
»* Long chain (C10H, C11H) performed better

e X =-, y=7(C7H), 10 (C10H), 11 (C11H) . .
o oo I »* EG performance similar to C7H

# CSMEG (HB acceptor)

» Functional group performance similar to C7A
CH, .
Mo bi—{omocs.coc » Comparable chain length performance
n * HB donor/acceptor (C10H, C11H) resulted in lower IASS
® CSMEG  CIl1A (non-HB) degraded

* In general, performed better than EG
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Two Component Coatings
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Non-HB: Different Chain Lengths

~-8°C w-12°C -16°C ;f JCH,  @x=2(C3A),6(CTA)

Ice Adhesion Shear Str., kPa

Al Control 0 50
C7A in C3A/C7A coatings, %
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Increasing HB Content: Different Chain Lengths

| -8°C [ _12°C _16°C —o—i;s—{cmi—cm e x= 6(C7A)

CH;
|
. 0—Si—{CH,+—X—0H @ X=-- y= 10 (C10H)
(|:1H‘< 2t y (
3

Ice Adhesion Shear Str., kPa

Al Control 0

C10H in C7A/C10H coatings, %
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“-8°C w-12°C = -16°C
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Increasing HB (acceptor) Content:
Different Chain Lengths

w-8°C w-12°C -16°C A —Of(S::iHL(CHZtCHg o x= 2 (C3A)

CH;
|,
_0_?1_(CH2>5—OCH2CH20CH3 ® C5MEG

Ice Adhesion Shear Str., kPa

Al Control 0
C5MEG in C3A/C5MEG coatings, %
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Increasing HB (acceptor) Content:
Different Chain Lengths

CH;

] _80C N _120C _160C *O—%i—<CH23/x7CH3 ex= 6(C7A)

CH;

CH,
I

_Of?l—(CHZﬁOCHZCHZOCPb ® C5MEG
CH,

Ice Adhesion Shear Str., kPa

Al Control 0
C5MEG in C7A/C5MEG coatings, %
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Increasing HB (acceptor) Content:
Different Chain Lengths

CH,4

Al

B -8°C B _120C _16oc —o—%i—(CHz)y—X—OH ®X=-, y=7(C7H)

CH;

CH;
|

_0_?1 _<CH2>5—OCH2CHZOCH3 e C5MEG
CH;,

Al

Ice Adhesion Shear Str., kPa

Al Control 0
C5MEG in C7H/C5MEG coatings, %
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Two Component Coating Summary

CH,

Al _O_%i —{emy—cn #  Aliphatic (non-HB)

CH;

* IASS increased with increasing short chain (C3A) component.

e x =2 (C3A), 6 (CTA)

# HB (donor/acceptor) and Aliphatic (non-HB)

. * General - Increasing HB component (Hydroxyl) increased
Al —O—%ii(CHzi(_CHS IASS
il * Exception -16°C where IASS comparable

e x =2 (C3A), 6 (CTA)

* C7A/C10H suggested degradation, base components

CH, exhibited no degradation

Al I
__0—si CHZ};X—OH
i—

CH;

» EG/C3A
® X=-, y=7(C7H), 10 (C10H) . . .
) ) * 25% EG inclusion exhibited comparable performance to
® X =-OCH,CH,-, y=2 (EG)
C3A

* 50% EG inclusion
+ Better performance than C3A at -8 and -12°C
+ Worse performance at -16°C
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Al

Al

Al

Al

CH,
|
—O—?l —(CH2>5~OCH2CH20CH3

CH,4
® C5SMEG

CH,4

|
—o—?i—{CHﬂchm
CH;,
e x =2 (C3A), 6 (CTA)

CH,
|
—O—?i—( CHZ%5 OCH,CH,0OCH;

CH;
® C5SMEG

CH;

_O_%i4<CH2}X—X—OH

CH
@X=-, y=7(C7H)

Two Component Coating Summary

# HB (acceptor) and Aliphatic (non-HB)
» Performance dependent upon non-HB chain length
* (C3A afforded lower IASS compared to C7A
+ Presumably due to better accessibility of

in-chain ether group to water
 C5MEG/C3A overall performance better than
EG/3A 50/50

# HB (acceptor) and HB (acceptor/donor)
» In general - performance not as good as HB
(acceptor) alone
» Data suggested coating degradation
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Receding Water Contact Angle
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Conclusions

# Effect of coating composition on IASS is complex
* One component coatings
e Chain length effect upon IASS is functional group dependent
e No clear trend observed between functional groups
* Two component coatings
* More relevant when incorporating functionalities into polymeric
systems
* General — increasing HB content (HB donor/acceptor) increased
[ASS
* Mixed chain length effect upon IASS is composition/functional
group dependent
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Future Work

# Develop monomers with pendant groups based on non-HB and HB
(acceptor) effects

# Prepare epoxies based on the developed monomers

# Test epoxy coated Al samples in AERTS to determine IASS
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